Gene selection for cancer classification using the combination of SVM-RFE and GA
نویسندگان
چکیده
Gene selection is a key research issue in molecular cancer classification and identification of cancer biomarkers using microarray data. Support vector machine recursive feature elimination (SVM-RFE) is a well known algorithm for this purpose. In this study, a novel gene selection algorithm is proposed to enhance the SVM-RFE method. The proposed approach is designed to use the combination of SVM-RFE and genetic algorithm (GA). The performance of the proposed model is validated on a binary and a multicategory microarray gene expression datasets. The results show that the proposed gene selection method is able to elevate the performance of SVM-RFE, which extracts much less number of informative genes and achieves highest classification accuracy.
منابع مشابه
A Novel SVM-RFE for Gene Selection∗
Selecting a subset of informative genes frommicroarray expression data is a critical data preparation step in cancer classification and other biological function analysis. The support vector machine recursive feature elimination (SVM-RFE) is one of the most effective feature selection method which has been successfully used in selecting informative genes for cancer classification. While, the SV...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملBook Review | New Books September 2003
Background: In class prediction problems using microarray data, gene selection is essential to improve the prediction accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVM-RFE) has become one of the leading methods and is being widely used. The SVM-based approach performs...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کامل